# Métodos de envasados de alimentos

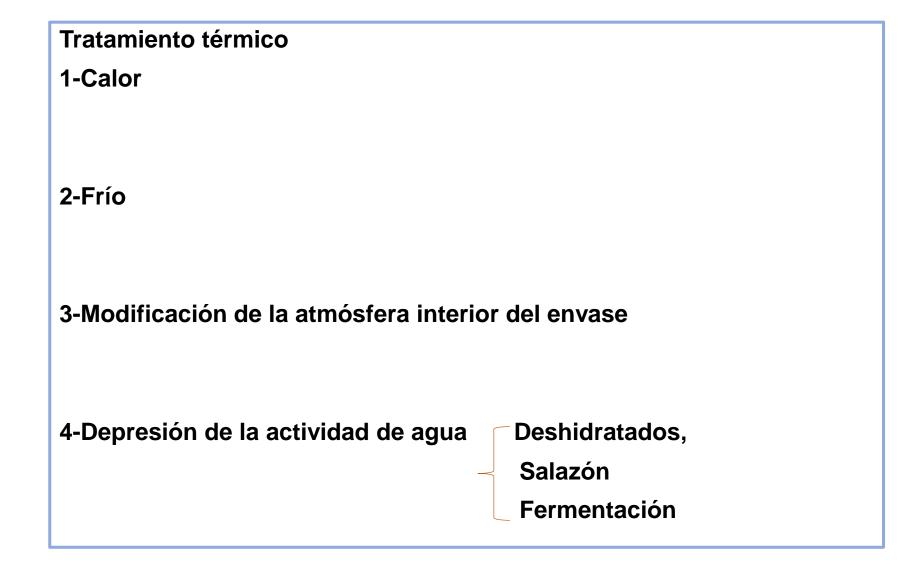













- Procesos específicos
- Equipos



 Exigencias de los materiales de envasado en función de las tecnologías de envasado

# Tecnologías de conservación por:



# 1-Conservación por tratamientos térmicos

- Alta conductividad térmica
- Responder rápido al control de temperatura
- Distribuír en forma homogénea el calor
- Resistencia

# 1-Conservación por tratamientos térmicos

Alimentos de larga duración a temperatura ambiente

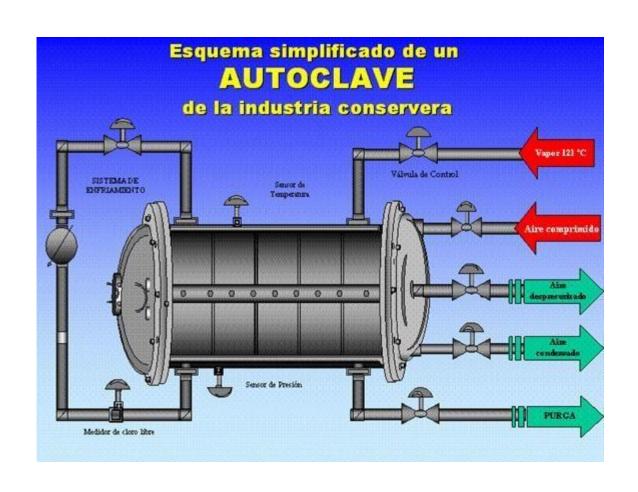








# Apertización


 Se conoce como apertización la invención de Nicolás Appert de conservación de alimentos.

Appert conservaba los alimentos en frascos de vidrio tapados herméticamente y sometidos a la acción del calor.

En 1861 substituyó la simple esterilización a 100° en agua hirviente, por una salmuera de cloruro de calcio que le permitía obtener II6° C.

Este método fue mejorado usando la autoclave, haciendo la esterilización bajo presión, lo cual permitió utilizar temperaturas adecuadas y eliminar el inconveniente de la limpieza de las latas atacadas por el cloruro de calcio

# **Apertización**



### **Apertización**

Se realiza en un envase impermeable al gas

Por calor, se inhiben totalmente enzimas, microorganismos y sus toxinas (asegurar la estabilidad biológica del producto)

PREPARACIÓN-ENVASADO-CERRADO-ESTERILIZADO

### Métodos utilizados

| Metodos<br>tradicional | de APERTIZACION    |             |         | Aplicaciones                        |
|------------------------|--------------------|-------------|---------|-------------------------------------|
|                        | rellenar cerrar    | esterilizar | enfriar | todos<br>los<br>productos           |
| autoesterilización     | esterilizar        | cerrar      | enfriar | productos<br>líquidos<br>o pastosos |
| aséptico               | esterilizar enfria | LONGINGE    | cerrar  | idem y con<br>partículas<br>sólidas |

#### Cómo funciona autoclave

- Se colocan los productos en recipientes, diseñados especialmente para estabilizar.
- Se colocan los recipientes dentro de la autoclave.
- Entrada del agua o de vapor a las altas temperaturas.
- Si es el caso que se introduzca agua en la autoclave, esta es sometida por encima de los 100°C para llevar a cabo la esterilización.
- El vapor de agua coagula y destruye los microrganismo presentes y se completa el proceso de esterilización.

### Diagrama de flujo



# Envases utilizados para alimentos apertizados

#### Pueden ser:

- Metálicos: Hojalatas, Chapa cromada (TFS), Aluminio.
- De cristal
- De plástico
- Envases cerámicos
- A base de compuestos aluminio-plástico, cartón-aluminio-plástico

#### Las formas y presentaciones:

- Latas redondas, ovales, rectangulares, etc.
- Bandejas rectangulares, redondas, ovales, etc.
- Sacos, tubos.

#### Los envases responden a necesidades:

- Consumo individual o familiar, así como comidas en restauración o fuera de casa.

### Características

- -Hermeticidad
- -Impermeabilidad a gases y vapores (radiaciones)
- -Resistencia a los cambios de presión (por los tratamientos térmicos) (flexibilidad y resistencia mecánica)
- -Resistencia a temperaturas de pasterización o esterilización

# Envasado aséptico

Es el llenado de 1 producto

"comercialmente estéril" en un envase estéril, bajo condiciones asépticas

(sin m.o)

y sellado hermético del contenedor para evitar reinfección.

# Métodos de esterilización de envases para envasado aséptico

- Vapor
- Aire caliente seco
- H2 O2 en baño caliente o pulverizado (peróxido de hidrógeno)
- RADIACIÓN
- OXIDO DE ETILENO
- ÁCIDOS paracético, fosfórico, cloro, iodóforos entre otros

## Envasado aséptico

- Aplicaciones:
- 1. Envasado de productos pre-esterilizados (leche, jugos, sopas, etc.)
- 2. Envasado de productos no estériles para evitar infección (yogurt).
- Razones de uso:1. Utilizar envases que no permiten ser esterilizados con el producto.
  - 2. Poder utilizar la técnica HTST
  - (alta temperatura corto tiempo)
  - 3. Extender la vida de anaquel a temperatura ambiente.

# Conservación por tratamientos térmicos: tipos de envases

- acero recubiertos/ aluminio
- vidrio
- plásticos esterilizables: bolsas flexibles tarrinas y bandejas

# 2- Conservación por frío

### CONGELACIÓN-túnel



# **Bajas temperaturas**

• Los microorganismos psicrófilos resisten.

 La formación de cristales en el interior de las células reduce la población

### Características

- Resistencia a temperatura de congelación
- Resistencia ocasional a temp. de ebullición (para descongelar)
- Baja permeabilidad a la humedad
- Ocasionalmente flexibilidad y resistencia mecánica.

### **Embolsadoras**



### El modo de funcionamiento es el siguiente:

- El operario coloca la bolsa vacía y presiona el pedal de carga.
- Comienza la carga con la vibración del canal que transporta el carbón hacia la bolsa.
- Cuando se llega al peso seteado (programado desde el panel frontal) la escobilla se cierran y finalizó la carga.
- El operario ya está en condiciones de retirar la bolsa llena y colocar una nueva para repetir el ciclo.
- Estas máquinas se destacan por su gran sencillez de manejo (se necesita 1 solo operario para utilizarlas), su diseño simple y su fácil mantenimiento.MÁQUINA DISCONTINUADA

# Conservación por frío. Tipos de envases

- Plásticos
- Complejos: papel-cartón-plásticos.

# 3- Conservación por modificación en la atmósfera interior del envase

**ENVASADO AL VACÍO** = PRESIÓN ATMOSFERICA<a 10 mbar(milibar)

#### **Objetivo:**

 Crear una atmósfera libre de oxígeno para retardar crecimiento de bacteria y hongos.

#### Envasado al vacío

- Ni se humedecen ni pierden humedad.
- Evitan contaminaciones posteriores.
- Evita el quemado por congelado.
- Fácil manejo de stock.

### Envasado al vacío

Envasado al vacío o con gas inerte

Características: hermeticidad

elevada impermeabilidad al

 $O_2 y N_2$ 

REFRIGERACIÓN (POSTERIOR

PROCESO)

# Equipos de envasado



# Equipos de envasado al vacío



#### Inconvenientes

- COLOR
- TEXTURAS BLANDAS deformaciónadhesión- aplastamiento.

# Conservación por vacío Tipos de envases

- aceros recubiertos/aluminio
- vidrio
- plásticos complejos de alta barrera.

# CONSERVACIÓN POR MODIFICACIÓN EN LA ATMÓSFERA INTERIOR DEL ENVASE

#### Envasado en atmósfera modificada

Características: hermeticidad

elevada impermeabilidad

o permeabilidad selectiva a gases

(según producto y tecnología de envasado)

#### Envasado atmósferas modificadas

- 1-se hace vacío.
- 2- se sustituye los gases ambientales por la mezcla deseada para cada tipo de producto.
- 3- gases inhibidores del crecimiento microbiano y mejoradores de las cualidades sensoriales.

- nitrógeno gas inerte, no tiene efecto sobre los m.o.
- Completa la atmósfera de envasado para desplazar el O2 y CO2 previniendo el colapso de vacío.
- Evita (enranciamiento-oxidación) inhibe m.o.aeróbicos por la sustitución del oxígeno.

- Dióxido de carbono controla la flora microbiana aún en presencia de O<sub>2</sub> (se disuelve en el líquido) bacteriostático y fungicida.
- Reduce el ph e interviene en los procesos enzimáticos.
- Ideal a bajas temperaturas.

- **Oxígeno** la eliminación total puede traer problemas m.o.anaeróbicos.
- Color (oxidación de la mioglobina en carnes)
- Enranciamiento.
- Mantiene metabolismo respiratorio de frutas
- y hortalizas 5% (se usa con frecuencia)

Existe para cada producto fórmulas.

45 % CO<sub>2</sub>

5% O<sub>2</sub>

50% N<sub>2</sub>

Importante conservar a bajas temperaturas

# **Ejemplos**

| PRODUCTO                | % O2  | % CO2 | % N2  |
|-------------------------|-------|-------|-------|
| Panificados             |       | 50    | 50    |
| Carnes rojas frescas    | 40-60 | 10-20 | resto |
| Pollo fresco            |       | 20-30 | 70-80 |
| Pescados grasos frescos |       | 40-60 | 40-60 |
| Pasta fresca            |       |       | 100   |
| Queso fresco            |       | 30-40 | 60-70 |
|                         |       |       |       |
|                         |       |       |       |
|                         |       |       |       |

# **Ejemplos**

| PRODUCTOS               | % <b>O</b> <sub>2</sub> | % CO <sub>2</sub> | <b>%N</b> 2 |
|-------------------------|-------------------------|-------------------|-------------|
| manzanas                | 1-3                     | 1-5               | resto       |
| palta                   | 2-5                     | 3-10              | 75-80       |
| cítricos                | 5-10                    | 15-20             | 50-70       |
| Mezcla de<br>hortalizas | 2-4                     | 2-4               | resto       |

### Atmósferas modificadas

#### Ventajas

Aumenta vida útil significativamente.

Buena presentación.

Sin aditivos.

## Atmósferas modificadas

#### Desventajas

- -inversión en equipos y gases.
- -conservación en frío. (riesgo patógenos)

# Conservación por atmósferas modificadas. Tipos de envases

Plásticos simples o complejos con permeabilidad controlada según producto.

# Atmósferas modificadas (MAP)

ATMÓSFERAS CONTROLADAS (CAP) es cuando se controla la composición de gases durante el almacenamiento.

# Envasadoras atmósferas modificadas

- Envasadoras que usan envases rígidos o semirígidos preformados.
- Envasadoras que usan envases semirígidos termoformados.
- Envasadoras que usan películas adheridas.

## Equipos de atmósferas modificadas



### Factores a considerar:

- Composición y características del alimento.
- ✓ Estado sanitario Limpieza y carga microbiana.
- ✓ Temperatura de almacenamiento (suceptibilidad del producto alteraciones m.o.)
  - ✓ Composición de la atmósfera (aire N2 78% y O2 20%) humedad, presión-temperatura etileno (fito-hormona)
- Materiales de envasado y tecnología de envasado

# 4-Conservación por depresión de la actividad de agua

**Deshidratación**: pérdida total o parcial de agua de distintos alimentos por ventilación y liofilización

Ventilación o desecado de alimentos (exposición al sol)

Alimentos disminuyen su tamaño sus cualidades organolépticas (pasas uva, etc) Varía su composición nutricional

# Envases adecuados para conservar

- Bolsas de vacío,
- Vidrio,
- Envases de plástico retráctiles

- Liofilización:
  - Desecación por proceso industrial (huevos, leche, etc)
- Inhibe la acción de m.o y enzimas
- Envase plástico retráctil, vidrio

#### Tecnología de los envasados

Las tecnologías de envasados y materiales están en continuo desarrollo y mejora para satisfacer las necesidades de los consumidores El cambio del estilo de vida las nuevas tecnologías y la preocupación con el cuidado del medio ambiente, son la razón que el mercado se encuentra evolucionando constantemente.

#### Características de envasado de alimentos

| ALIMENTOS               | CARACTERISTICAS                                                                                                                                                                                                                      |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Lácteos                 | Impermeable al vapor de agua, a los olores, opaco, resistente al rasgado y a la humedad ambiente por la condensación de la refrigeración.                                                                                            |  |  |  |
| Carnes                  | Fresca: permeable al oxígeno e impermeable al vapor de agua. Resistente a la humedad.                                                                                                                                                |  |  |  |
|                         | Vacío: impermeable al oxígeno y al vapor de agua, resistente a la humedad, termocontraíble, termosellable.                                                                                                                           |  |  |  |
|                         | Curados: impermeable al oxígeno y al vapor de agua, opaco para evitar modificaciones de los pigmentos (nitrosomioglobina) por acción de la luz.                                                                                      |  |  |  |
| Pescados                | Impermeable a los gases y al vapor de agua. Termosellable, resistente a la grasa, a la humedad y a las bajas temperaturas.                                                                                                           |  |  |  |
| Aves                    | Semipermeable al vapor de agua, resistente a la humedad, impermeable a las grasas, preferentemente termocontraíble.                                                                                                                  |  |  |  |
| Frutas y<br>verduras    | Permeable al oxígeno y al dióxido de carbono, al vapor de agua, resistente a la humedad. En vegetales de hoja se utilizan films perforados (pequeño poros) para evitar la condensación de agua dentro del envase.                    |  |  |  |
| Panificación            | Pan fresco: impermeable al vapor de agua.                                                                                                                                                                                            |  |  |  |
|                         | Pastelería: impermeable al vapor de agua y a las grasas.                                                                                                                                                                             |  |  |  |
| Alimentos<br>grasos     | Impermeables al oxígeno, grasas, olores, opaco.                                                                                                                                                                                      |  |  |  |
| Alimentos               | Jaleas, mermeladas y dulces: impermeable al vapor de agua, resistente a la humedad, a los ácidos y a altas temperaturas (pasteurizable).                                                                                             |  |  |  |
| dulces                  | Dulces (fondant, caramelos, etc.): impermeable al vapor de agua, aceites esenciales, de baja adherencia al producto.                                                                                                                 |  |  |  |
| Bebidas                 | Impermeable al vapor de agua, al oxígeno, al dióxido de carbono, a los olores, resistente a la presión interna, libre de fugas, resistente a la humeda a las altas temperaturas y a los productos químicos (pasteurización, lavado). |  |  |  |
| Alimentos<br>congelados | Impermeable al oxígeno, al vapor de agua, a las grasas, a los olores, resistente a bajas temperaturas. Preferentemente opaco. Sellado hermético o termosellable.                                                                     |  |  |  |

#### Resumen

- Los **procesos de envasado** requieren de equipos especializados que manejen los materiales de forma eficiente y segura. Estos procesos son cruciales para proteger el producto, garantizar su conservación y facilitar su distribución.
- Las tecnologías de envasado varían según el tipo de producto y las necesidades específicas de conservación y transporte. Por ejemplo, los alimentos pueden requerir envasado al vacío para prolongar su frescura, mientras que otros productos pueden necesitar envases resistentes para el transporte a larga distancia.
- Las exigencias de los materiales de envasado dependen de las características del producto, como su sensibilidad a la luz, temperatura o presión. Los materiales deben seleccionarse cuidadosamente para cumplir con estas exigencias y garantizar la integridad del producto hasta que llegue al consumidor final.

# Bibliografía

- Medin. R, Medin. S. Alimentos. Introducción, Técnica y Seguridad.
- 2ª Edición. Ediciones Turísticas de Mario Banchik. Argentina 2003.
- Envasado.pdf (material plataforma EVA)
- Sistemas y Tecnologías de envasado: disponible en
- http://www.itene.com/i-d-i/lineastecnologicas/sistemas-y-tecnologias-de-envasado
- http://www.scielo.org.co/scielo.php?script=sci\_arttext&pid=S1794-44492008000200014